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Abstract

Under the support provided by ARO in the form of a MURI for Humanitiarian demining,
successful techniques for discriminating between mines and anthropic clutter have been
developed using a statistical signal processing approach. The improved performance
provided by these algorithms has been validated using data obtained by DARPA. In
order to determine whether these algorithms have wider application than the relatively
high-metallic content mines used in the DARPA experiment, the Night Vision Laboratory
(NVL) was interested in augmenting the work begun under the MURI. The Joint UXO
Coordination Office at Ft. Belvoir, VA is sponsoring a series of experiments designed to
establish a performance baseline for metallic mine detectors. This baseline will be used
to measure the potential improvements in performance offered by advanced signal
processing algorithms. The goal of the work funded under this grant was to collect data
from low-metal content mines using Geophex’s GEM-3 sensor and to begin the
development of improved detection algorithms. This report provides a summary of the
results obtained during the course of this study, a summary of experimental data

acquisition methods, and the report generated for an early experiment conducted in
conjunction with this project.
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Background

Historically, electromagnetic induction (EMI) sensors have been used extensively to
locate buried land mines. EMI sensors detect the metal that is present in such mines.
However, land mines vary in their construction from metal-cased varieties with a large
mass of metal to plastic-cased varieties with minute amounts of metal. Unfortunately,
there is often a significant amount of metallic debris (clutter) present in the environment.
Consequently, EMI sensors that utilize traditional detection algorithms based solely on
the metal content suffer from large false alarm rates. When the sensor sensitivity is set to
detect the very small amount of metal found in typical plastic-case mines, these false
alarm rates become unacceptably high. In addition, for high-metallic mines, it is
commonly assumed that the effects of the soil are negligible with respect to the sensor
response. To date, no testing has been done to validate the assumption that the effects of
soil are negligible when detecting low-metallic content mines.

Under the support provided by ARO in the form of a MURI for Humanitiarian demining,
successful techniques for discriminating between mines and anthropic clutter have been
developed using a statistical signal processing approach [1-4]. The improved



performance provided by these algorithms has been validated using data obtained by
DARPA [5]. In order to determine whether these algorithms have wider application than
the target set used in the DARPA experiment, the Night Vision Laboratory (NVL) was
interested in augmenting the work begun under the MURI. The Joint UXO Coordination
Office at Ft. Belvoir, VA is sponsoring a series of experiments designed to establish a
performance baseline for metallic mine detectors. This baseline will be used to measure
the potential improvements in performance offered by advanced signal processing
algorithms.

Problem Studied

The long-term goal of this research is to determine whether enhanced signal processing
algorithms derived using signal detection theory (SDT) applied to data collected with
EMI sensors (e.g., Geophex’s GEM-3 sensor and the Schiebel PSS-12 sensor)
substantially reduce false alarm rates over traditional approaches. To achieve this goal,

we performed several preliminary experiments and analyses to show proof of concept.
These included

(1) performing an experiment at Geophex, Ltd. to determine whether the GEM-3
could be used to measure signatures from buried low-metal mines,

(2) gathering signature data at a calibration site located at Fort A. P. Hill,

(3) comparing the false alarm rate of the SDT-based algorithms to energy-based
algorithms at the same detection rate on data collected at a calibration site at
Fort A. P. Hill, and

(4) gathering signature data at the all data points in the blind test grid located at
Fort A. P. Hill

NVL was responsible for creating and maintaining the test site at Fort A. P. Hill. The
targets that were emplaced included both low-metal and high-metal anti-personnel mines.
The targets were emplaced on an x-y grid with approximately 1,000 intersections, with
the intersections spaced adequately to avoid target interference. Approximately 100 of
the intersections contained targets. A calibration area was also made available adjacent
to the test site which contained a few targets for initial system calibration.

This report includes a description of

(1) a summary of the results obtained during the course of this study
(2) a summary of experimental data acquisition methods, and
(3) the report generated for the Geophex experiment (in Appendix A).

Also associated with this work are

(1) “Raw” sensor output data from collection efforts on ZIP disks
(2) An excel file listing the data collection parameters for each grid point
measured.




These items have been delivered to JUXOCO for dissemination on their web site.

Summary of Results

1. Geophex Experiment

The main goal for this preliminary experiment was to use the GEM-3 sensor to collect
digital, multi-frequency signal data from mines in free space and mines buried in soil.
Extensive measurements of the background were taken, both in free space and in soil, to
determine differences between (a) the background with mines present, and (b) the
background without mines present. This data also allows us to examine the stability of
the sensor response. Geophex recently obtained data with the GEM-3 that indicate that,
in free space, it can both detect and discriminate various low-metal content mines. We
wanted not only to verify Geophex’s free space data with the same mine types but also to
determine the effect of burial in soil on these mine signatures. We also included two
high-metallic content mines in our target set. These large metal mines were used to
confirm a commonly held assumption: for “large” metal objects the effects of burial in
soil are negligible on the sensor response. By comparing the signatures of these large
metal mines in free space and when buried, we could evaluate the validity of this
assumption. In addition, we could also determine whether the signatures of low-metallic
content mines are the same as in free space as when they are shallowly buried. To date,
the validity of this assumption has not been tested for low-metallic content mines.

A description of the GEM-3, the experimental protocol, and a detailed analysis of the
results of this experiment are contained in the report provided in Appendix A. A
summary of the results are:

(1) The presence of soil does affect the signature recorded by the GEM-3 for low-
metallic content mines, and does not affect the signature for high-metallic
content mines.

(2) It is possible to detect low-metal land mines using the GEM-3.

(3) The measurements obtained are statistical in nature, not deterministic.
Detectors, or algorithms, which effectively incorporate the stochastic
character of the signals should be able to out-perform traditional detection
algorithms.

(4) The sensor experiences some drift in its response. Drift must be considered
both in gathering data and in the analysis. At a minimum, background
measurements must be made during data collection for accurate background
correction.

2. Calibration area data collection

Hand-held mine detector experiments were conducted between June and July 1998 at
Range 71A of Fort A. P. Hill. The test site and preparation are described in detail in [7].
A calibration area was established consisting of known targets and known, well
characterized, clutter emplaced at known locations. The calibration area consisted of 5



lanes, labeled A through E, each 25 meters long and 1 meter wide. This area was located
adjacent to the main test grid, and contained at least one of each mine contained in the
main test grid. Data collection in the calibration area was performed by the PI and a
graduate student, Ms. Ping Gao. Mr. John Moulton and Mr. John Carey of EOIR assisted
with all aspects of the data collection.

1 meter square data collection templates were constructed for placement at each grid
location in both the calibration lane and the main test grid to facilitate signature
collection. The template was constructed of foam, and had a series of marks for use in
locating the sensor head at the appropriate positions. 10 spatial positions were measured
in each grid point. For grid points in which the GEM-3 response did not overload, these
points were located at —4”, -2”, 07, 2”, and 4” from the center in both a vertical and a
horizontal orientation [7]. Collection points were labeled 1 — 5 from top to bottom and 6
— 10 from left to right. When the sensor response overloaded, the sensor head was raised
24” above the ground and the spatial samples were taken every 4” as opposed to every
2”. Signatures were measured at 20 frequencies spaced logarithmically between 270 Hz
and 23,790 Hz. Each signature was measured twice. All measurements were recorded in
a log-file in ascii format (see section 5 below for more detail). The log file was named
according to the grid. For example, the data collected for grid square B2 was saved in a
file called ‘B2.ppm’.

Data was collected in the calibration area four times: on June 9-11, July 6-7, July 27, and
September 30, respectively. Data was measured at each grid point where either a target
or clutter had been emplaced. Following the collection of signatures at each of the 10
spatially distributed points corresponding to one grid square, a background measurement
was taken at a blank grid point. These “background” measurements were used to track
the sensor drift described above, and in the report attached in Appendix A. The
background measured after a grid square is labeled according to the grid square it
follows. For example, the background measured following the collection in square B2
would be called ‘bg_b2.ppm’.

Following data collection, the data were hand-corrected for any data drop-outs that
occurred as a result of the serial connection between the GEM-3 and the PC controller.
These data were then analyzed as described in the following section.

3. Performance enhancements using calibration data

A series of simple detectors were designed to analyze potential false alarm rate
improvements using the data obtained in the calibration lanes. Prior to implementing the
detectors on the data measured at each grid point, the background must be removed. An
example of the variability of the background is shown in Figure 1. Figure 1 illustrates the
variability in the in-phase component of the background response measured on7/7/98.
Responses are plotted as PPM versus log-frequency — see [7] for a description of the
PPM unit. Clearly, substantial variation in the background signature occurs over the
course of the day, especially in the high frequencies.
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Figure 1: Variation in in-phase component of the GEM-3 signature on 7/7/98

Several approaches for background correction were analyzed. In the first, the
background measured immediately prior to the measurement of a grid point was
subtracted from each spatial signature. In the second, the background measured
immediately after the measurement of a grid point was subtracted from each spatial
signature. The third approach used the average of the background signatures measured
immediately before and after measuring the signatures in the grid. The final approach
utilized a linear prediction of the background obtained from the background measured
before and the background measured after the data collection for a particular the grid
square in order to provide background correction.

The performance of the background correction algorithms was analyzed by performing
one measurement in which a background was taken between every spatial measurement,
i.e. the order of measurements was Background 1 — Spatial position 1 — Background 2 -
Spatial position 2 - ... - Background 10 — Spatial position 10 — Background 11. Using
this approach the true background for a particular spatial position could be very
accurately estimated from the bordering background measurements. The ‘“actual”
background-corrected signatures could then be compared to those obtained using the four
methods, corresponding to using Background 1, Background 11, the average of
Background 1 and 11, and linear prediction using Backgrounds 1 and 11 respectively.

As expected, using only Background 1 produced substantial errors in the spatial positions
measured later (7 —10). Similarly, using only Background 11 produced substantial errors
in the spatial positions measured earlier (1 — 3). Utilization of the average background
produced fair estimates in the middle spatial positions (4-6), but poorer estimates in the



earlier and later positions. The linear prediction method provided the best approach to
background correction. Examples of the background corrected estimates for the
signatures are shown for one grid point (K-32) at the first, fifth, and tenth spatial position
respectively in Figures 2-4. The true signature is shown with the solid line, the dashed
line illustrates the prediction using the previous background, the dashed-dotted line
illustrates the prediction using the following background. The black line shows the
signature obtained using the linear prediction. Both in-phase (red) and quadrature (blue)
data are shown. Clearly, the prediction method works best, especially at the higher
frequencies.
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Figure 2. Background correction example for grid point K32 at the first spatial
position. “Previous” background approach is coincident with true solution.
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Figure 3. Background correction example for grid point K32 at the fifth spatial
position.
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Figure 4. Background correction example for grid point K32 at the tenth spatial
position. “Following” background approach is coincident with true solution.



Once background correction has been adequately achieved, various algorithms can be
applied to the data. In the main grid, grid points can consist of targets, clutter, or
“blanks”, i.e., empty spots. In the calibration lane, only grid points consisting of targets
and clutter were measured, so future work will included simulating blanks for analysis
with the calibration lane data.

We consider two classes of algorithms, those which are based solely on the energy
measured at a particular point and those which process the measured signature. We
further divide these two classes into algorithms which operate only on the data measured
at the center of the grid, and those measured at the various spatial points. In this way, we
can quantify the performance of a “baseline”, which we consider to be center-point
energy-based algorithms. We can also quantify performance gains associated with using
the entire frequency-domain signature, as well as incorporation of spatial information.
Finally, when considering energy-based algorithms, we subdivide those into various ad-
hoc procedures versus statistically-based Bayesian procedures. When considering
signature-based algorithms, we consider both statistically-based Bayesian procedures as
well as model-based Bayesian procedures. This classification system is illustrated in
Figure 5. White blocks have been pursued with the calibration data set, gray blocks
remain future work.

Ad-hoc Statistical Threshold
CFAR, Delta| | LRT, GLRT

Statistical

Figure 5. Algorithm classification chart. White boxes have been implemented in
the calibration area, gray boxes remain future work.

Figures 6 and 7 illustrate ROC curves for various energy-based processors. Figure 6
illustrates the performance of a simple energy threshold for the center point (red line), a
CFAR processor which thresholds the difference between the center point and the
average of the adjacent points (green line) [8], the delta processor, which thresholds the
number of times the center point was larger than the surrounding eight points (magenta
line) [9], and a GLRT/matched filter (blue line) [1]. Clearly, baseline performance
follows the chance diagonal, and the GLRT provides some performance improvement.
The GLRT shown in Figure 6 assumes Gaussian distributed data. The 2D-GLRT
described in [1] estimates the statistics of the data and derives a GLRT based on the
spatial statistics. Figure 7 illustrates the performance of the 2D-GLRT (blue line) as
compared to a thresholded energy (red line). Clearly, it is possible to improve
performance above the baseline using these techniques.

Figure 8 illustrates the ROC for a statistically-based Bayesian processor operating on the
signature measured at the center point (blue line). The processor is trained on the



signature measured at spatial position 3 and tested on the signature measured at spatial
position 8. Performance is compared to the baseline energy detector (red line). Clearly,
incorporating the frequency-domain signature information shows potential for
substantially improving detector performance.
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Figure 6. Comparison of the performance of various energy-based processors.
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Figure 7. Comparison of the performance of a Bayesian spatial processor using
energy data to the baseline energy detector performance.
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Figure 8. Comparison of the baseline performance (energy detector) to two
processors which incorporate the physical nature of the signal into the processing.

4. Main grid data collection

Hand-held mine detector experiments were conducted in the main grid between July and
October 1998 at Range 71A of Fort A. P. Hill. The test site and preparation are described
in detail in [7], and the data collection mechanisms are described above. The main test
grid was established consisting of approximately 100 targets, and an unknown number of
clutter objects and blank squares. The main grid consisted of 20 lanes, labeled A — T,
each 49 meters long and 1 meter wide. Data collection in the calibration area was
primarily performed by the PI and a graduate student, Ms. Ping Gao. Two other Duke
University graduate students, Mr. David Ferguson and Ms. Yingyi Tan, also assisted in
the data collection at various times. Mr. John Moulton and Mr. John Carey of EOIR
assisted with all aspects of the data collection. The format of the data is described briefly
below. At each grid point, the data and time of the collection were recorded. Data was
collected 7/27-31/98, 8/10-14/98, 9/21-25/98, 9/28-30/98, and 10/27-29/98. Background
measurements were taken at one of four grid squares: E11, E39, O11 and O39. These
squares were set aside as known “blanks” by JUXOCO. The closest blank was used as
the background for each grid square.

The calibration data and the main grid data have been transferred to JUXOCO to be
placed on their web site. All of the data from each of the grid points and background
measurements were supplied. In addition, an excel file which lists the grid point, and the
associated date of collection, time of collection, location of associated background
measurement, and file names for the grid point data file, previous and following
background files are listed.

5. Data formats

The GEM-3 can be programmed to sequentially record the magnetic field at a set of user
defined frequencies. To select these frequencies, the operator selects

(1) a minimum and maximum frequency,
(2) the number of frequencies, and
(3) linear or logarithmic spacing of frequencies.

Based on these parameters, the frequencies are generated automatically by the GEM-3
operating system. To gather the data at Fort A. P. Hill, we selected 20 logarithmically
spaced frequencies. When the induced magnetic field is recorded, both in-phase and
quadrature (measured in ppm) are measured. The GEM-3 can also be programmed to
automatically repeat the measurement an arbitrary number of times. At Fort A. P. Hill,
we repeated each measurement 2 times. Thus, at a particular spatial location, 2
measurements were taken. Therefore, for an entire grid square, 20 measurements were
taken.



In this experiment, we operated the GEM-3 remotely. We used a laptop PC to transmit
data acquisition parameters to the GEM-3 and to record the measured responses through
the serial port. Prior to data acquisition, we allowed the sensor to warm up for at least ten
minutes. As the data is acquired, it is written to a log file on the hard disk. The log file
consists of a header that lists the acquisition parameters, followed by the recorded data.
Each line of the recorded data lists the acquisition number, measurement number (i.e.., 1
to 2), frequency, in-phase response, quadrature response, and an error flag. Commas
separate the recorded data. Note, the first number, called ‘acquisition number’ is a
number internally maintained by the GEM-3. When the sensor is turned on, it is
initialized to 1. Every time a scan is completed, it is incremented by the GEM-3
operating system. This number is not necessarily indicative of the order of the scans,
since the number is incremented even if a scan is aborted, which sometimes occurs if
errors are detected.

Table I shows ans example of the recorded data. A portion of the second measurement is
also shown. The measurements are listed as acquisition number 5. As shown, additional
measurements are appended to the end of the listing of the first measurement. The
acquisition number does not change, the measurement number is incremented, the list of
frequencies does not change, and each in-phase and quadrature sample is recorded along
with the error flag.

Acquisition Measurement | Frequency | In-phase | Quadrature | Error
Number Number Data Data Flag
5 1 270 48 -79 0
5 1 330 198 -55 0
5 1 420 180 49 0
5 1 540 205 85 0
5 1 690 315 94 0
5 1 870 445 101 0
5 1 1110 972 83 0
5 1 1410 1369 35 0
5 1 1800 2069 -48 0
5 1 2250 2939 -340 0
5 1 2850 4253 -827 0
5 1 3630 6058 -1727 0
5 1 4590 8387 -3268 0
5 1 5820 14949 -9999 0
5 1 7350 18874 -16281 0
5 1 9330 25686 -36616 0
5 1 11790 27499 -51767 0
5 1 14940 27463 -70573 0
5 1 18930 24938 -94418 0
5 1 23970 9202 -162973 0
5 2 270 49 -75 0




Table I: An example of a raw data sample recorded by the GEM-3.

The GEM-3 records in-phase and quadrature data as a function of frequency in ppm.
These data are based on a current measurement, as opposed to a magnetic field
measurement. Therefore, to convert these measurements to data that are proportional to
magnetic field strength, an inverse dependence on the frequency and a 90-degree phase
shift must be incorporated (see Appendix I for details). Thus, the following calculations
should be used for each of the measurements taken:

s ()

I(f)=-221

) 7 |
_L,()
o(f) A

Here, f'is frequency, I,(f) and Q,(f) are the in-phase and quadrature samples reported

by the GEM-3, and I(f) and Q(f) are the calculated in-phase and quadrature samples
that are proportional to the magnetic field.
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I. Introduction
A. Background

Historically, electromagnetic induction (EMI) sensors have been used extensively to locate buried
land mines. EMI sensors detect the metal that is present in such mines. However, land mines
vary in their construction from metal-cased varieties with a large mass of metal to plastic-cased
varieties with minute amounts of metal. Unfortunately, there is often a significant amount of
metallic debris (clutter) present in the environment. Consequently, EMI sensors that utilize
traditional detection algorithms based solely on the metal content suffer from large false alarm
rates. When the sensor sensitivity is set to detect the very small amount of metal found in typical
plastic-case mines, these false alarm rates become unacceptably high. In addition, for high-
metallic mines, it is commonly assumed that the effects of the soil are negligible with respect to
the sensor response. To date, no testing has been done to validate the assumption that the effects
of soil are negligible when detecting low-metallic content mines.

The Joint UXO Coordination Office at Ft. Belvoir, VA is sponsoring a series of experiments
designed to establish a performance baseline for metallic mine detectors. This baseline will be
used to measure the potential improvements in performance offered by advanced signal
processing algorithms. This report describes a preliminary experiment that is part of the larger
series of experiments to develop performance baselines for mine detection by EMI sensors.

B. Approach

Our approach to lowering false alarm rates is to develop advanced algorithms that take advantage
of additional information present in the received signal from EMI sensors. Conventional
algorithms have not exploited this information. The general concept is to separate the mine’s
return signal from both the background and the clutter signal returns. The signal that is measured
by an EMI system consists of either (1) a “background” return alone (due to soil, etc.), (2) the
superposition of a background return and a return from a mine, or (3) the superposition of a
background return and a return from clutter. Thus, if the background signal is subtracted from the
measured signal, we can “see” the mine or clutter signature and potentially discriminate between
the two.

To implement the advanced algorithms, we will use signal detection theory. Signal detection
theory affords a powerful tool for designing algorithms to both detect and discriminate signals of
interest in the presence of noise and man-made, or anthropic, clutter. To utilize this tool, it is
necessary to define (1) a set of hypotheses to be tested and (2) the statistical nature of the data
that is associated with each of the hypotheses. In this preliminary experiment, we ignore the
possibility of clutter and assume that the signals that are measured correspond to the response of
the sensor either to a mine in a background environment or to the background environment alone.
Future experiments will address the clutter issue in detail.

Thus, for this preliminary experiment, there are only two hypotheses: H;: “mine present in
background” and Hy: “background alone”. It is assumed that the response of the sensor under
either of the hypotheses is subject to some amount of “noise”. This noise can be ascribed either
to the electronics of the sensor itself, or to random variations in environmental parameters. In
either case, it is important to characterize the statistics of the noise in order to formulate the
detection algorithm prescribed by signal detection theory. The first step in this process is to
characterize the probability density function (pdf) that describes the noise process (e.g.,
Gaussian). This characterization allows us to obtain a general description of the statistical



parameters of the noise and its pdf, such as its mean and variance. We also generate a pdf for the
target responses in different backgrounds. Next, it is important to determine whether or not these
statistics are stable, or stationary, i.e., whether the statistics vary as a function of the signal
parameters themselves. For this preliminary experiment, we examined this stability assumption
over the following parameters:

(1) the absolute amplitude level of the received signal, which may correspond to whether
or not a mine is present

(2) the amount of time the sensor has been operating, corresponding to something akin to
“drift” in the mean response of the sensor, and

(3) the frequency at which a measurement is made.

IL. Experiment Description
A. Goals

The main goal for this preliminary experiment was to use the GEM-3 sensor to collect digital,
multi-frequency signal data from mines in free space and mines buried in soil. Extensive
measurements of the background were taken, both in free space and in soil, to determine
differences between (a) the background with mines present, and (b) the background without
mines present. This data also allows us to examine the stability of the sensor response, as
discussed above. Geophex recently obtained data with the GEM-3 that indicate that, in free
space, it can both detect and discriminate various low-metal content mines. We wanted not only
to verify Geophex’s free space data with the same mine types but also to determine the effect of
burial in soil on these mine signatures. We also included two high-metallic content mines in our
target set. These large metal mines were used to confirm a commonly held assumption: for
“large” metal objects the effects of burial in soil are negligible on the sensor response. By
comparing the signatures of these large metal mines in free space and when buried, we could
evaluate the validity of this assumption. In addition, we could also determine whether the
signatures of low-metallic content mines are the same as in free space as when they are shallowly
buried. To date, the validity of this assumption has not been tested for low-metallic content
mines.

B. Mine Descriptions

To address the goals of the experiment, six inert land mines were provided by NVESD through
the Joint UXO Coordination Office. These were actual mines that were “down-loaded” (all
explosives removed). For the low-metal content mines, care was taken to insure that all the
correct metal parts were present in the proper location and orientation. Table I lists the mines that
were tested, along with their relevant characteristics [1]. Both high-metal and low-metal content
mines were evaluated in order to measure the effects of the soil and the statistics of the noise
process as a function of metal content.

Mine Name Type Diameter Description and Metal Content
(cm)
Valmara AP, M 10 Italian bounding fragmentation mine. Plastic case
over large metal canister. Total metal: 2800 g
VS50 AP, LM 9 Italian round plastic-cased blast mine. Mine case
empty of any fill. Total metal: 18.21 g




M14 AP, LM 5.6 US and Indian manufactured plastic bodied blast
mine. Case empty of any fill. Total metal: 0.6 g

M19 AT, LM 33 American rectangular plastic blast mine. Test mine

case filled with room temperature vulcanized
material (RTV). Total metal: 0.94g

VS22 AT, LM 23 Italian plastic blast mine. Case empty of any fill.
Total metal: 3.29 g
TS50 AP, LM 9 Italian plastic-cased cylindrical blast mine. Case

empty of any fill. Total metal: 441 g

Table 1. Mines tested in the experiment. AP = Antipersonnel mine, AT = Antitank mine.
M = High metal content, LM = Low metal content.

C. Sensor

Physical nature of the sensor response. The GEM-3 is a prototype wide-band frequency-
domain EMI sensor manufactured by Geophex, Ltd. The GEM-3 uses a pair of concentric,
circular coils to transmit a continuous, wideband, digital electromagnetic waveform [2]. The
resulting field induces a secondary current in the earth as well as in any buried objects. The set of
two transmitter coils has been designed so that they create a zone of magnetic cavity at the center
of the two coils. A third receiving coil is placed within the magnetic cavity so that it senses only
the weak secondary field returned from the earth and buried objects.

wire

Figure 1. Model of the GEM-3 receive coil. Red path indicates the path of the induced
current and thus the line contour for integration; blue shaded area indicates surface area
for integration. Entire wire diameter is noted.

The receiving coil can be modeled as shown in Figure 1. Faraday’s Law gives the equation
governing response induced in the receiving coil:

d n do

emf =¢E-dl=——@B-nds =——

/= fpd=-o 7
where emf is the electromotive force, E is the electric field intensity, / is the path length through
the wire, B is the magnetic flux density, 72 is the unit vector perpendicular to ds, ds is the




differential surface element on the surface S circumscribed by the coil, and @ is the magnetic
flux. Since the electric field, E, is zero inside the wire, the above equation can be rewritten as

d do
vV, -V, =2 §{BAds =2
b T dtﬂ "=

Using Fourier theory, this derivative relationship in the frequency domain is transformed into a
linear relationship in the frequency domain as

V, =V, = jod(w).

Thus, the measured frequency-domain voltage across the loop is proportional to the magnetic flux
and, correspondingly, to the magnetic flux density.

In practice, the version of the GEM-3 used in this experiment measures the current through a
resistor in series with the receiving loop. Measuring the current is equivalent to measuring the
voltage across the loop. This current is 90 degrees out of phase with the voltage, and therefore
the magnetic flux density. The in-phase and quadrature components at each frequency of interest
are obtained by convolving (multiplying point by point and adding) the received time-series with
a sine time-series (for in-phase) and cosine time-series (for quadrature) at the frequency of
interest. The data obtained from the convolution are converted into units called parts-per-million
(ppm) defined as

measured _data p
ppm = = x10
calibration _data

The calibration data at each frequency had previously been obtained (and programmed into the
GEM-3) by hanging the GEM-3 “from the top of a tall tree” [2,3] and measuring the sensor
output. This normalization attempts to remove the system impulse response from the measured
data. The ppm data are logged by the sensor for each frequency as in-phase and quadrature
components. The phase relationships and frequency dependence are not corrected at this point.

Operational Issues. The GEM-3 can be programmed to sequentially record the magnetic field at
a set of user defined frequencies. To select these frequencies, the operator selects

(1) a minimum and maximum frequency,
(2) the number of frequencies, and
(3) linear or logarithmic spacing of frequencies.

Based on these parameters, the frequencies are generated automatically by the GEM-3 operating
system. The operator has the option to make modifications to the list of frequencies. The process
of recording the induced magnetic field (in-phase and quadrature measured in ppm) at each of the
specified frequencies will be referred to as a measurement (see Figure 2). For example, if the
GEM-3 is programmed to record data at 4 kHz and 10 kHz, then a measurement would consist of
in-phase and quadrature data (in ppm) at each frequency, i.e., four data values would be recorded.
Each of these individual data values will be referred to as a sample. The GEM-3 can also be
programmed to automatically repeat the measurement an arbitrary number of times. For
example, the GEM-3 could be programmed to measure the response at 4 kHz and 10 kHz 5 times.
Multiple repetitions of a measurement for a particular experimental setup will be referred to as a



scan. A scan can be used to assess the repeatability of a measurement, and thus the statistics of
the noise process.

To summarize the terminology, assume that the GEM-3 has been programmed to record the
magnetic field induced at 4 kHz and 10 kHz and to repeat the data collection 5 times. A sample
is a particular response that is recorded by the GEM-3, e.g. the 4 kHz in-phase component. 5
measurements would be taken, each of which consists of 4 samples. The scan is the entire set of
5 measurements. This terminology is illustrated in Figure 2.
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Figure 2. Illustration of terminology. IP denotes in-phase component, Q denotes
quadrature component.

In a “noise-free” sensor, each of the samples taken above would be identical across all of the
measurements. For example, the 4 kHz in-phase sample taken in measurement would be exactly
the same as the 4 kHz in-phase sample taken in measurements 2-5. However, due to sensor noise,
these samples will rarely be identical. Thus, by evaluating the statistics of a particular sample
across the set of measurements, we can characterize the noise process. This can lead to an
estimate of the pdf of the noise process, as discussed in Section III.

In this experiment, we operated the GEM-3 remotely. We used a laptop PC to transmit data
acquisition parameters to the GEM-3 and to record the measured responses through the serial
port. Prior to data acquisition, we allowed the sensor to warm up for at least ten minutes. As the
data is acquired, it is written to a log file on the hard disk. The log file consists of a header that
lists the acquisition parameters, followed by the recorded data. Each line of the recorded data
lists the acquisition number, measurement number (e.g., 1 to 5 in the example shown in Figure 2),
frequency, in-phase response, quadrature response, and an error flag. Commas separate the
recorded data. Note, we call the first number ‘acquisition number’ as opposed to scan number. It
is a number internally maintained by the GEM-3. When the sensor is turned on, it is initialized to
1. Every time a scan is completed, it is incremented by the GEM-3 operating system. This
number is not necessarily indicative of the order of the scans, since the number is incremented
even if a scan is aborted, which sometimes occurs if errors are detected.




Table II shows an example of the first measurement of the M19 scan recorded in free-space. A
portion of the second measurement is also shown. The measurements are listed as acquisition
number 5, since the warm-up scan was number 1 (a background measurement), and the M14 was
the 4™ data set gathered after the warm-up (see following section for additional details regarding
the order in which the scans were gathered). As shown, additional measurements are appended to
the end of the listing of the first measurement. The acquisition number does not change, the
measurement number is incremented, the list of frequencies does not change, and each in-phase
and quadrature sample is recorded along with the error flag.

Acquisition | Measure | Frequency | In-phase | Quadrature | Error
Number ment Data Data Flag
Number
5 1 90 7 18 0
5 1 120 12 26 0
5 1 150 18 28 0
5 1 180 761 -284 0
5 1 240 48 51 0
5 1 300 198 -55 0
5 1 360 105 63 0
5 1 420 180 49 0
5 1 510 205 85 0
5 1 630 315 94 0
5 1 750 445 101 0
5 1 900 585 65 0
5 1 1110 972 83 0
5 1 1320 1369 35 0
5 1 1620 2069 -48 0
5 1 1950 2939 -340 0
5 1 2370 4253 -827 0
5 1 2880 6058 -1727 0
5 1 3480 8387 -3268 0
5 1 4230 11397 -5884 0
5 1 5130 14949 -9999 0
5 1 6240 18874 -16281 0
5 1 7560 22620 -24987 0
5 1 9150 25686 -36616 0
5 1 11100 27499 -51767 0
5 1 13440 27463 -70573 0
5 1 16320 24938 -94418 0
5 1 19770 19226 -124453 0
5 1 23970 9202 -162973 0
5 2 90 8 17 0

Table II: An example of a raw data sample recorded by the GEM-3.




D. Data Collection — General Protocol

The goals of this preliminary experiment were to assess the detectability of the mines in both free
space and when buried, to determine whether the signal measured for each mine is identical in
soil and free space, and to investigate the statistics of the noise process associated with the sensor.
To assess the detectability of the mines and the effects of the ground on a mine’s “signature”, the
response of the sensor to each mine as a function of frequency was determined both in free space
and when buried in the soil. In the initial experiment, we characterized the frequency response in
the range of 2 kHz to 24 kHz. 25 frequencies were linearly spaced in this range.

As was discussed previously, when the mine is present, the response of the sensor consists of a
response both to the mine and a response to the background. To obtain the response due to the
mine alone, it is necessary to determine the response of the sensor to the background alone.
Therefore, in this experiment, we interspersed recordings (scans) of the response of the sensor to
the background (no-mine) with recordings (scans) of the response of the sensor to the mine
embedded in its background. Responses were initially recorded in free-space, then responses
were recorded in the soil. To investigate the statistics of the noise process, including its stability,
50 measurements were taken in each scan. The experimental protocol can be summarized as
follows:

(1)  Sensor warmed up for 10 minutes, and was never subsequently turned off.

(2) Background scan: 50 measurements across the frequency range of 2,000 Hz to
24,000 Hz in linear steps. No mine present.

(3) Mine scan: 50 measurements in the same frequency range. Sensor located in free
space approximately 6 inches from the top of the mine.

(4) Repeat steps 2-3 with each mine until all free space scans completed.

(5) Final background scan (50 measurements, same frequency range) in free space.

(6) Background scan: 50 measurements across the frequency range of 2,000 Hz to
24,000 Hz with no mine present with sensor located approximately 4 inches from
the soil.

(7) Bury mine, top of mine 1 inch deep. Tamp soil.

(8) Mine scan: 50 measurements in the same frequency range. Sensor located
approximately 4 inches from the soil.

(9) Excavate mine, tamp soil.

(10) Repeat steps 6 through 9 with each mine until all soil scans completed.

(11) Final background scan (50 measurements, same frequency range) in soil.

Under these conditions, a complete scan (50 repeated measurements, each measurement taken at
25 frequencies) required approximately 10 minutes. The entire free space data collection was
completed in approximately 3.5 hours, and the soil data collection required approximately 4.5
hours. The sensor was never turned off during the experiment.

A graphical illustration of the experiment flow is contained in Figure 3 for the case when 25
measurements are taken for each scan. This experimental protocol was implemented on April 29,
1998 and April 30, 1998, however 50 samples were taken for each scan. During the soil data
collection phase, a concurrent experiment that was being performed at Geophex forced a
temporary relocation of the sensor. Following this relocation, a substantial offset was observed in
the data obtained during the background scans. Upon investigation, Geophex engineers
determined that a screw that attaches the GEM-3 sensor head to its supports had become loose.
As a result, the subsequent data that was obtained was considered to be invalid, and the
experiment was repeated, with the modifications discussed below, on May 14, 1998.



Free Space Data Collection Flow Chart:
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In Soil Data Collection Flow Chart:
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Figure 3. Flow chart of data collection in free space and soil. Arrows indicate progression
of time. BG = Background measurement/no mine present, Mine = Mine measurement.
Second line of text indicates the “scan identifier” associated with the 25-measurement scan.
Each scan required approximately 6 minutes to complete.

Prior to repeating the initial experiment, the collected data were analyzed to determine whether
the experimental protocol should be modified. An important observation that resulted from this
analysis was that the mean, or average, value of the “background” scans varied as a function of
time, even in free space. Hereafter, this phenomenon is referred to as “sensor drift”. Based on
this, the number of samples measured for each scan was reduced to 25. This reduced the amount
of time required to complete a scan, and thus reduced the amount of drift that occurred within a
scan. This was important because, as will be discussed later, it had previously been assumed that
the average of the measurements performed during the course of a scan was a valid estimate of
the mine or background signature. This assumption proved to be untrue. The underlying noise
process is not stable over time. This issue will be the subject of future analyses.

In addition, after consulting with Geophex engineers, the frequency range over which data was
taken was modified to reflect the range used in their initial experiment in which the low-metal
content mines were observed to be different than the background. Thus, the second data
collection was identical to the first except for the following:

(1) 25 measurements were performed in each scan instead of 50.
(2) The frequency range spanned 90 Hz to 24,000 Hz in 29 logarithmic steps.



E. Sensor/Target Configuration — Final Data Collection

Data was collected under two conditions: a) with the sensor situated in “free-space” (i.e.
suspended in the air) at a fixed distance from the targets, and b) with the sensor situated at a fixed
distance above the ground in which the targets were buried to a depth of 1”. Under each
condition, data was gathered alternatively with the target absent (background scan), then with the
target present (see Figure 3). The frequencies that were used, 19 total, in the second data
collection are listed in Table II in the third column. These frequencies were generated in a range
- from 90 Hz to 24 kHz using a logarithmic spacing. For each target and background scan 25
measurements were made.

Data was gathered first in the free-space condition. For all of the mines except the Valmara, the
distance between the top of the mine and the bottom of the sensor head was approximately 10 cm.
These distances are listed in Table III. The sensor to mine distance for the Valmara had to be
increased since, due to the higher metal content, the response that was exceeded the dynamic
range of the sensor at the closer distance.

Next, data was gathered with the mines buried 1 inch from the top of the mine to the surface of
the soil. Again, for all of the mines except the Valmara, the distance between the top of the mine
and the bottom of the sensor head was approximately 10 cm (see Table III). The data was
acquired in the reverse order from that in the free-space condition in order to disturb increasing
amounts of soil as the data collection progressed (see Figure 3).

Mine Target/Mine distance — air (cm) | Target/Mine distance — soil (cm) | File name
Valmara 28 27.5 valm.ppm
M19 11 10.5 m19.ppm
VS2.2 10 9.5 vs22.ppm
TS50 9.5 10 ts50.ppm
VS50 9.5 10 vs50.ppm
Ml14 10 9.5 ml4.ppm

Table III. Experimental parameters used in second experiment.

Following each data collection, data was stored in an ASCII file on the hard disk. The
subdirectory of the file indicates the test condition (e.g., ‘air’ or ‘soil’), and the name of the file
denotes the scan (scan_identifier). The background conditions are named sequentially as
backg1l.ppm, backg2.ppm, ... backg7.ppm (see also Figure 3). The names of the files associated
with each of the mines are self-explanatory, but are listed in Table III. These files were converted
to similarly named files with a .dat extension in which the header has been removed. These .dat
files are contained in the appropriate subdirectories on the disk accompanying this report.

For the measurements taken in free-space, the GEM-3 was mounted on a wooden rack with the
sensor head approximately 6 feet from the wooden base of the platform (see Figure 4). Both
platform and rack were manufactured with no metal parts. The rack assembly allowed placement
of targets on a wooden shelf at various distances beneath the sensor head. The sensor head was
centered over the mine manually for each measurement. The GEM-3 was linked via cable to the
serial port of the laptop PC located approximately 30 feet from the test assembly (see Figure 5).
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Figure 4. GEM-3 mount and support system for free-space data collection. Sensor head is
located approximately 6 feet from the ground.

Figure 5. The GEM-3 was controlled remotely from a laptop PC. The free-space assembly
is behind and to the right of the picnic table (out of view). The soil assembly is behind and
to the left of the point from which the picture is taken.

For the measurements taken in soil, the GEM-3 was mounted on a combination of a sawhorse and
wooden stand (see Figure 6). The radial location of the wooden stand was adjusted to raise and
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lower the sensor head to achieve the desired distance from the ground. The sensor head was
centered over the target manually for each measurement.

Figure 6. GEM-3 mount and support system for in-soil data collection.

III.  Analysis and Results

Several analyses were performed in order to investigate the statistics of the sensor noise process
as well as to extract the signatures of the mines from the measured data. These will be described
in the following subsections.

A. General Approach and Notation

This section describes the basic mathematical manipulations that were performed on the raw data
measured by the GEM-3. We first describe the normalization required to transform the raw data
into data proportional to the induced magnetic field strength. We then define notation that will
allow us to refer to specific measurements taken in a particular scan.

In order to extract the signatures of the mines from the measured data, we assume that the best
estimate of the signal represented by the set of measurements comprising a scan is the average of
those measurements. The notation for this analysis is also defined. We further assume that when
the average of the set of measurements comprising the background scans taken before and after a
mine scan is subtracted from the average of the mine scan, the result is an estimate of the mine’s
signature. Below, we specifically define this relationship for this “background corrected”
signature.

To evaluate the statistics of the sensor noise process, the standard deviation of the set of
measurements comprising a scan is defined. This measure gives an estimate of the variability of
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the signature. Finally, the set of data acquired during the course of a scan at a particular
frequency is defined. This data will be used to estimate the pdfs of the noise process.

M
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T T ‘i revious _bg _ identi (f ) + j identi; ( f )
_bg_ ifier next _bg _ identifier
I scan _identifier .bc (f ) =1 scan _identifier (f ) -2 an

As discussed previously, the GEM-3 records in-phase and quadrature data as a function of
frequency in ppm. These data are based on a current measurement, as opposed to a
magnetic field measurement. Therefore, to convert these measurements to data that are
proportional to magnetic field strength, an inverse dependence on the frequency and a 90-
degree phase shift must be incorporated (see Section II.C for details). Thus, the following
calculations were used for each of the measurements taken:

O (f)
I(f)=-=5222
N 7
Q(f)=——IS(f)

f
Here, fis frequency, I,(f) and Q,(f) are the in-phase and quadrature samples reported

by the GEM-3, and I(f) and Q(f) are the calculated in-phase and quadrature samples
that are proportional to the magnetic field.

The in-phase and quadrature responses obtained on the i measurement as a function of
frequency are denoted either I’ identifier (f') OT Qsican_,.dem,ﬁe, (f). Here, i ranges from 1
to 25 (or 50), and scan_identifier refers to the scan, as well as the file name that was used

to store the data (e.g., backg3, M19, etc.). For example, I,,,,(f) is the in-phase data
measured at each frequency on the 9™ (of 25) measurement during the M14 scan.

The mean in-phase and quadrature signatures for a particular scan are calculated as the
average of all of the 25 (or 50) measurements via

_ 13,
I scan _identifier (f ) = _2-5- Z I scan _identifier (f ) and
i=1

1 25 ;
Qscan_identiﬁer (f ) = E Z Qscan_idennﬁer (f ) '
i=1

The mean signatures are indicated with a bar and do not have a measurement index

superscript. Thus, ,,,,(f) is the mean of the in-phase measurements taken during the
M14 scan as a function of frequency.

A “background corrected” average signature is derived for each mine by subtracting an
estimate of the background signature from the mean of the scan for each mine. The
background estimate is calculated as the average of the background measurements taken
immediately prior to and after the mine scan. For example, the background estimate for
the M14 mine in free space would consist of the average of the measurements taken in the
6™ and 7™ background scans. The background corrected signature is denoted by a ‘b¢’ in
the subscript, and is given by

d

2
revious _bg _identifier (f ) + Qnaxt_bg_identiﬁer (f )

_ _ 0
Qscan_idenhﬁer,bc (f ) = Qscan_identl_'fier (f ) — 2
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We also define the average background signature for each mine as the second term in the
above equations, or

I 7 BACKGROUND . Iprew'aus _bg _identifier (f ) +1 next _bg _ identifier (f )
scan _identifier (f ) - 7

Qprevious _bg _identifier (f ) + Qnaxt _ bg _identifier (f )
2

7y BACKGROUND
Qscan_identzﬁer (f ) =

The superscript ‘BACKGROUND’ indicates that this is an average background signature
associated with the mine denoted by the scan identifier. Rewriting the first two equations
using the above notation,

7 BACKGROUND
I scan _ identifier bc (f scan _ identifier (f ) -1 scan _identifier (f )
7 BACKGROUND
Qscan _identifier .be (f ) scan _ identifier (f ) Qscan _identifier (f )

For the M14 in free space,

backg6 (f ) . backg? (f ) _ _M14 ( f) I Al;":fKGROWD (f) and

Q-backg6 (f ) + ébackg7 (f )
2

I—M14,bc (f) = jM14 -

—Q—M14,bc (f) = §M14 (f) - = §M14 (f) QagffKGROUND (f) .

The standard deviation of the in-phase and quadrature signatures is calculated for each scan
as

1 -
O-:can_identxﬁer (f ) = J 24 Z( scan _identifier (f ) -1 scan _identifier (f ))2
i=1

L& -
O-chan_idemiﬁer (f ) = J EZ Zl (Qscan_idennﬁer (f ) - Qscan_identiﬁer (f ))2 .

For example, o, (f) is the standard deviation as a function of frequency of the in-phase
measurements taken during the M14 scan.

The set of in-phase or quadrature samples taken during a particular scan at a given

frequency, f;, are denoted I identier (fo) and Qj;'},,,_ wentier (fo) TESPECtively, and are
given by the sets

::'l}m _identifier (f 0) { scan _identifier (f 0 )’ scan _ identifier (f 0 scan _ identifier (f 0 )} and

{1
s;an _identifier (f 0 ) {Qscan _identifier (f 0 ) Qscan _identifier (f 0 ) Qscan identifier (f 0 )}

Thus, I ,(900) = {I},,,(900),12,,(900),...1% ,(900)} is the set of in-phase
measurements taken during the M14 scan at 900 Hz.
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B. Characterization of the Noise Process

The goal of this analysis is to characterize the statistics of the noise. These statistics will be used
to formulate the detection algorithm prescribed by signal detection theory. The probability
density function (pdf) that describes the noise process (e.g., Gaussian) was evaluated by forming
histograms of the data taken during a scan at each frequency (see III.A.6 above). We generated
these histograms in both soil and free-space. In general, 50 samples of a noise process are
adequate to obtain estimates of its mean and variance. However, 50 is not a large enough sample
to accurately estimate the functional form of a pdf, or histogram. We provide an example of this
in the Results section). Therefore, as part of a future experiment, a 1000 measurement scan of a
“clean” background will be performed in order to obtain a better estimate of the functional form
of the pdf, as well as to address the sensor drift issue in more detail.

In order to determine whether or not the statistics of the noise process are stable, we examined the
mean and variance of the statistical distributions as a function of the following parameters:

(1) the absolute amplitude level of the received signal

(2) the amount of time the sensor has been operating, corresponding to something akin to
“drift” in the mean response of the sensor, and

(3) the frequency at which a measurement is made.

In the initial experimental design, 50 measurements were to be made in each scan. This data was
to be used to 1) analyze the statistics of the noise process, and 2) to determine the detectability of
low metal mines in both free space and when buried in soil. Although our original goal was to
characterize the pdfs of the noise process by analyzing all of the background data together (a total
of 350 measurements in both the free space and soil conditions), the sensor drift issue made this
infeasible. Figure 7 illustrates the sensor drift problem using histograms of the 2,370 Hz data
measured in each of the free space background scans. The histogram for each scan, backgl
through backg7, follows the color scheme listed in the legend. In general, the mean of each scan
is increasing with time (scan number), however the mean of backg5 is less than the means of
backg3 and backg4. This indicates that the mean, as well as the standard deviation, of the sensor
response is not stationary in time. Clearly, combining data across all scans cannot generate a
valid estimate of the pdf of the noise process.
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Figure 7. Color-coded histograms of the data obtained at 2,370 Hz during the free space
background measurements. The change in both the mean and standard deviation of each
data set indicates that the sensor response “drifts”, or is not stable over time.

Although 50 data points are sufficient to provide relatively accurate estimates of the mean and
variance of a process, 50 points are not sufficient to differentiate between a set of candidate pdfs.
To illustrate this point, we used a random number generator to produce 50 samples from a
Gaussian distribution and 50 samples from a uniform distribution. Histograms of these data are
provided in Figure 8. Clearly, it is difficult to definitively say that the histogram of one set of
data is indicative of a Gaussian distribution and the other a uniform distribution.
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Figure 8 — Histograms of 50 samples of a Normal/Gaussian and Uniform density function.

In order to investigate the sensor drift issue further, Figures 9 and 10 plot the average response as
a function of frequency for each of the background measurements (backgl — backg7) for free-
space and soil, respectively. These are based on the experimental data in which 25 measurements
were taken. Since the data below 300 Hz was extremely noisy, it is not plotted. The noisiest
(highest variance) data occurs at integers of 60 Hz. Figures 11 and 12 plot the standard deviation
of the 25 measurements as a function of frequency for each of the background measurements
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taken in free-space and soil, respectively. Both Figure 8 and Figure 9 indicate that the mean
response of the sensor changes substantially as a function of time — indicating that the mean is not
stationary. Comparing Figure 9 with Figure 8 indicates that variability in the density or moisture
level of the soil (associated with digging) may also change the “background” signature recorded
by the sensor. However, based on this analysis, it is difficuit to separate out the differences that
result from changes in the soil density from differences that result from slight changes in the
sensor to soil distance. This effect should be considered for advanced algorithm development.
Figures 11 and 12 indicate that the level of the variability (standard deviation) is a function of
frequency, and also appears to be a function of time. In general, more variability is observed at
high and low frequencies than in the middle of the frequency range. Clearly, this will have to be
considered for algorithm development.

In-phase Quadrature

|IIIIII[!lI)l|III|I|!]|(lllll|||l||

| | Ll L II| L Lol t Ll II | |
10° 10° 10°
Frequency (Hz) Frequency (Hz)

Figure 9 — Mean in-phase and quadrature background variation for the seven measured
samples in free-space. Color order (beginning with backgl and ending with backg7) = red,
green, blue, cyan, yellow, magenta, black.
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Figure 10 — Mean in-phase and quadrature background variation for the seven measured

samples in soil. Color order (beginning with backgl and ending with backg?7) = red, green,

blue, cyan, yellow, magenta, black. Note: bacgk7.ppm (black line) measured at a different
height.
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Figure 11 — Standard deviation of the data as a function of frequency in free-space from
each of the seven measurements. Color order (beginning with backgl and ending with
backg?7) = red, green, blue, cyan, yellow, magenta, black.
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Figure 13 — Standard deviation of the data as a function of frequency in free space from
each of the seven background measurements (shown in blue), from the M14 (shown in red),
and from the Valmara (shown in green).

In order to evaluate the effects of absolute amplitude of the received signal on the noise statistics,
the standard deviations observed in the background scans were compared to those associated with
the M14 and the Valmara. Figure 13 plots the standard deviation of the free-space background
scans (shown in blue) along with the standard deviation of the M14 scan (shown in red) and the
Valmara scan (shown in green). Clearly, there is no definitive relationship between signal
strength and noise strength, indicating that the noise process is stationary with respect to signal
amplitude.

Figures 14 and 15 plot each of the measured background signatures obtained in free-space and
soil, respectively, and also serve to indicate the extent of the drift. Additionally, it can be
observed from Figure 15 that as more and more soil is disturbed, the quadrature component of the
measured response increases. No clear pattem can be observed in the in-phase component.
Recall, the order of burial was M14, VS50, TS50, VS2.2, M19, Valmara and background
measurements were made following each emplacement. All soil was returned and tamped down
once the mine was removed, but the measurement was taken over the disturbed soil.
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green, red, cyan, yellow, magenta, black.
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Figure 15 — All in-phase and quadrature background signatures for the seven measured
samples in free-soil. Color order (beginning with backgl and ending with backg7) = blue,
green, red, cyan, yellow, magenta, black. Note: bacgk7.ppm (black line) measured at a
different height.

C. Calculation of the Average Background Corrected Mine Signatures

The average of each scan was calculated as described in III.A.3. To calculate the response of the
sensor to the mines without including the background response, the background response must be
subtracted from the response obtained with mine plus background. In free space, this was
performed by subtracting an estimate of the background signature measured before and after each
mine measurement (see III.A.4). In soil, the same approach was taken, with the exception of the
Valmara 69. When the Valmara scan was performed in soil, the distance between the sensor and
the ground was larger than the distance used for the other mines. Consequently, the background
signature measured following the Valmara scan (backg7) was taken with the sensor at the same
(greater) distance from the ground. Therefore, for the Valmara scan in soil, the background-
corrected signature was calculated as
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I_valm,bc (f) = I_valm (f) - jbackg? (f)
Q_valm,bc (f) = Qalm (f) - ébackg7 (f)

As will be discussed further in the Results section, the background changed substantially after the
mines were emplaced. Therefore, in addition to calculating the background corrected signals as
described in III.A.4, mine signatures were also calculated by subtracting the initial background
measurement, backgl. This scan was taken prior to disturbing the soil. The drawback to this
approach is that it does not incorporate any effects of sensor drift.

Figure 16 shows the average background corrected signatures for the six mines in free-space.
Each of the mines appears to have a different characteristic signature as a function of frequency.
Again, note that no clutter signatures were measured for comparison. Figure 16 also illustrates the
need for accurate background correction. As discussed in the previous section, the mean sensor
response that is measured when no objects are present “drifts” over time. The level of this drift
can be as high as 1 ppm over the course of a 2-3 hour period (see Figures 7, 9, and 14). The ppm
levels of the background corrected signatures for some of the low metallic-content mines are
smaller than this level of drift. Therefore, correcting a measured signal with an “old” background
measurement could substantially change the form of the background-corrected signal. Clearly,
this statistical variability must be built into detection algorithms.

Figure 17 shows the background corrected signatures for the six mines buried 1” deep in soil.
Again, each of the mines appears to have a different characteristic signature as a function of
frequency. However, for the low-metal mines, these are not the same signatures as those
measured in free-space, although the signatures for the Valmara and the VS50 match quite well.

Figure 18 plots the results shown in Figures 16 and 17 together. Clearly, the signatures measured
in the ground are different from those measured in the air. In addition, the signatures measured in
the ground have a higher magnitude than those measured in free-space. This may be a result of
the GEM-3 measuring the dielectric discontinuity between the mine and the ground. Dr.
Lawrence Carin, at Duke University, is attempting to address this hypothesis via a modeling
study. Figure 19 plots results similar to those of Figure 18, except that the soil signatures are
corrected by the background measured initially - i.e. to undisturbed soil.
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Figure 19 —Comparison of background corrected signatures in air and soil. Soil signatures
corrected by initial background measurement. Red = in-phase component, blue =
quadrature component, solid lines measured in soil, solid lines with circles measured in
free-space.
D. Detectability analysis

The goal of these analyses was to determine whether the sensor responses obtained from the
mines were different from the sensor responses obtained from the background (either soil or free-
space). Detection performance was measured using Receiver Operating Characteristic (ROC)
analysis. In order to employ ROC analysis, the following are required. First, a set of data is
needed in which repeated measurements were taken under both hypotheses: mine present and
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mine absent. This data is available in the mine scans and background scans, respectively. For
example, the detectability of the M14 in free space could be analyzed using the data collected in
the M14 scan and data collected in the backg6 and backg7 scans. Second, an algorithm for
processing the data must be specified. In this analysis, we have employed two different
algorithms, each of which we consider to be a “baseline” algorithm. These algorithms are
categorized as “baseline” because they are fairly routine approaches to processing such data.

In order to perform the ROC analysis, we have assumed that the algorithm has at its disposal a set
of measured in-phase and quadrature data on which to make a decision. The detector, or
algorithm, will not know a priori whether or not a mine was present when the data was measured,
and must therefore make this decision based on the measured data. We further assume that the
decision is made after performing a background correction on the measured data. This would
result in a target hypothesis, H;, in which the background-corrected signal consists of the mine
signature plus noise and the null hypothesis, Hy, in which the background-corrected signal
consists of noise alone. Therefore, to perform this analysis on the data collected in each set of
mine/background scans, a “background” must be subtracted from each measurement taken in the
scan. In this analysis, we have chosen to subtract the average background signature associated
with each mine scan as defined in ITL.A.4.

For the target hypothesis (H;), the data available to the detection algorithms consists of the 25
measurements taken in a particular mine scan corrected by the appropriate average background:

i _7i __ TBACKGROUND . __
I scan _ identifier be,H1 (f ) =1 scan _ identifier (f ) I scan _ identifier L= 1 .25 4

i i BACKGROUND .
Q.:can_identiﬁer,bc,H 1 (f ) = Q;can_idennﬁer (f ) - Qxcan_identiﬁer L= 1...25.

Thus, the detection algorithms have twenty-five signals available that were obtained when H; is
true. Note these signals are different than the previous definition of a background corrected
signature since each individual measurement has the background removed separately. In the
previous definition, the mean signature for the mine was corrected. The notation differs in that,
for the above signals, there is no bar associated with the signal and an index superscript, 7, is used.
The affiliation with the H; data set is also noted in the subscript. For the null hypothesis (Hy), the
data available to the detector consists of the 25 background measurements taken prior to the mine
scan along with the 25 measurements taken immediately after the mine scan, each corrected by
the appropriate average background:

i —7i 7 BACKGROUND . _
Iscan_idemtﬁer,bc,H 0 (f ) =1 previous _bg _identifier (f ) -1 scan_identifier » i=1...25 s

i BACKGROUND .
Qslcan _ identifier be,HO (f ) = Q;revious _bg _ identifier (f ) - Qscan _identifier > 1= 1 ter 2 5

i+25 i __ JBACKGROUND . __
Iscan_identiﬁer,bc,HO (f) - Ine.xt_bg_identiﬁer (f) Iscan_idem,'ﬁgr I = 1... 25

i+25 i BACKGROUND .
Q;:an_identz_'ﬁer,bc,H 0 (f ) = Qr‘zaxt_bg_identg'ﬁer (f ) - Qscan_ident{ﬁer L= 1.2 5

A total of 50 signals that were obtained when H, is true are available for processing. The
superscripts on the left-hand side of the last two equations use the notation i+25. This allows the
set of background corrected data to be indexed over the range of 26 to 50 as the measurement
index, i, ranges from 1 to 25,

The performance of two algorithms was analyzed. The first algorithm that was implemented was
an energy detection algorithm. Energy in a real signal, G(f), is calculated as
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E= ij( f)2df .

Energy in a complex signal, C(f) = R(f) +jI(f), is calculated as

E= [lCi)Pdf = IRUY +1(H' W

where R(f) is the real part of C(f), I(f) is the imaginary part of C(f), and j is the square root of -1.
In the case where the data consists of samples, the total energy is calculated by squaring each of
the sample values and summing them. In our data, there are 29 frequency samples, and the in-
phase and quadrature correspond to the real and imaginary parts of the signal, respectively. Thus,

the magnitude squared of the £™ frequency component, [M s"m,,_,.dmﬁe,)bc (f)T, is equal to the in-

phase component squared plus the quadrature component squared. The data for the target
hypothesis (H;) was the energy contained in the 25 background-corrected signatures defined
above, e.g., for the M14

Epia @ =2 (sgrapeis ST +[Qhtrapes FT) = D IM b (F)1 i =1...25
k=1 k=1

Note the H; notation in the subscript to indicate that this set of data is associated with the target
hypothesis. The data for the null hypothesis (H,) was the energy contained in the 50 background-
corrected background signatures that were measured immediately prior to and following
collection of the target data, e.g.,

EM14_H0 (l) = Z ([IIiIM,bc,HO (fk )]2 + [Q;{M,bc,HO (fk )]2) = Z [M1i414,bc (fk )]2 ,i=1...50

The second detection algorithm that was implemented was a matched filter. This approach is
normally implemented by calculating a matched filter signature either from theoretical
considerations or from a training set of measurements, and then implementing the filter on a
second set of measurements. However, time constraints did not allow such a design to be
implemented in this preliminary experiment. Therefore, for both soil and free space scans, odd-
numbered measurements within a mine scan were used to calculate the matched filter.
Performance was evaluated on the even-numbered mine measurements and all of the associated
background measurements. In addition, the matched filter derived from a free space mine scan
was applied to data obtained in soil.

As described above, the matched filter was calculated by taking the average of the odd
measurements of the background-corrected target signatures,




1 ,
tched _ filt
I smc:nc_ide;t{_;:‘eer':bc (f ) = Z I .:can _identifier bc,H1 (f )’

13 i=1,3,...25
1 : '
hed _ fil
Qsmc:;c_eide;g‘i:er':bc (f ) = '1—3' Z Q;can_identiﬁer,bc,H 1 (f )
i=1,3,...25

The superscript ‘matched_filter’ indicates that these are the matched filter signals. A correlation
operation on two signals is performed by multiplying the individual frequency components point
by point and then summing. The output of the matched filter, m, for the target hypothesis (H;) is
the correlation between this matched filter and the even scans of the background-corrected
signatures, i.e.,

matched _ filter

29
i .
m scan _identifier  H1 (E) = Z [(I .:can _identifier bc,H1 (f k )xI scan _identifier ,bc (f k ) +
k=1

hed _ fil .
Q;can__identiﬁer,bc,li 1 (f k )xgzz;c_ide;t{;izr,bc (f k )’l =2 ’4 .24

.1, . . .
The notation —2- is required to correctly index the output of the matched filter from 1 to 12, since

the index, i, proceeds through the even integers between 2 and 24. Note that this formulation
assumes that the in-phase and quadrature components of the received signal are independent. If
the sensor noise is 1) additive, 2) Gaussian, and 3) uncorrelated across time, the assumption of
independence is reasonable. The data for the null hypothesis (Hy) was the correlation between
this matched filter and the 50 background-corrected background signatures that were measured
immediately prior to and following the collection of the target data, i.e.,

29
> i tehed _ fill
Meon _identifier HO (l) = Z [(I s'can _identifier bc,HO (f k )XI s':nc_ide;t{ji'izr,bc (f k ) +
k=1

: matched _ filter .
Qscan_idenn_'ﬁer,bc,l{ 0 (f k )x Qscan_identiﬁer,bc 1= 1...50

This analysis was performed in both soil and in free-space.

If the GEM-3 sensor responds solely to the metal contained in the mine (i.e., the presence or
absence of the soil does not affect the measurement), then identical signatures should be
measured in both the free space and soil conditions. In this case, a matched filter derived from
the free space measurement could be used to detect the presence of a particular mine in soil.
Therefore, in addition to the matched filter analyses described above, the matched filters that
were calculated for the free space condition were also applied to the buried targets. This analysis
allowed us to determine whether the signatures measured in free space were useful for detecting
the same targets in soil.

Figure 20 shows the results of the ROC analysis for the six mines in free space. Figure 21 shows
similar results for the six mines in soil. The red curves illustrate the performance of the matched
filter detector; the blue lines illustrate the performance of the energy detector. In the where the
blue line is not visible cases (e.g. the Valmara ROC), the blue line is directly under the red line in
the upper left-hand corner. In free space, the energy detector achieves perfect performance on
four of the six mines. It is slightly less than perfect for the VS2.2, and its performance falls
below the chance diagonal for the M14. This anomaly results because the energy in the
background-corrected signature is lower for the M 14 than for the background. The matched filter
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detector achieves perfect performance on five of the six mines, and substantially outperforms the
energy detector on the M14.

In soil, the matched filter detector performance is perfect on all mines. The energy detector
performance is perfect on all but the VS2.2, where it always chooses the wrong hypothesis since
again, the energy in the background corrected signature is lower when the VS2.2 is present. This,
and the above somewhat anomalous result, may be an artifact of a poor background correction,
which results from drift in the background. When the mean background corrected signatures
from free space were used as a matched filter in the soil, detection performance was still perfect.
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=05 205
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Figure 20 — ROCs for the six mines in free-space. Red lines indicate matched filter detector
performance, blue lines indicate energy detector performance.
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Figure 21 — ROC:s for the six mines in soil. Red lines indicate matched filter detector
performance, blue lines indicate energy detector performance.

E. Discriminability analysis

The matched filters described above were used to perform classification for the six mines. The
solution to this problem was effected as a bank of matched filters. The classification task was
performed by assuming that the most likely target corresponds to the object associated with the
filter with the maximum output. Classification was performed in free-space using the matched
filters obtained in free space. For mines buried in soil, filters were used based on free air and soil
measurments. The matched filter solution assumes that the target signals are known exactly; any
uncertainty in the placement of the targets in the environment would substantially degrade
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classification performance using this approach. Reference [4] discusses this problem and
suggests an alternate approach that incorporates such uncertainty into the classification algorithm.

Table IV lists the discriminability of the various mines. These measures were calculated using a
matched filter bank. Half of the target signatures were used to create the matched filter, the other
half were used for the analysis. Clearly, it is possible to discriminate each type of mine from the
others in free-space or in the ground when the signatures are known exactly. It is not possible to
use the free-space signatures as discriminators for the ground measurements. In this case, the
classifier can discriminate the Valmara, VS50, and TS50, but the M14, M19 and VS2.2 are
always mis-classified as the TS50. It is also important to note that these data were obtained with
little to no change in the environmental or geometric variables and thus are not necessarily
indicative of real-world performance.

Condition Valmara VS50 TS50 M14 M19 VS2.2
Air-Air 100% 100% 92% 100% 100% 100%
Soil-Soil 100% 100% 100% 100% 100% 100%
Air-Soil 100% 100% 100% 0% 0% 0%

Table IV. Discrimination performance of matched filter classifier for signatures estimated
in free-space and applied in free-space (Air-Air), signatures estimated in soil and applied in
soil (Soil-Soil), and signatures estimated in free-space and applied in soil (Air-Soil).

IV. Conclusions

The results of this experiment indicate that:

(1) The presence of soil does affect the signature recorded by the GEM-3 for low-
metallic content mines.

(2) 1tis possible to detect low-metal land mines using the GEM-3.

(3) The measurements obtained are statistical in nature, not deterministic. Detectors, or
algorithms, which effectively incorporate the stochastic character of the signals
should be able to out-perform traditional detection algorithms.

(4) The sensor experiences some drift in its response. Drift must be considered both in
gathering data and in the analysis. At a minimum, background measurements must
be made during data collection for accurate background correction.
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